Large-Actuator-Count MEMS Deformable Mirror Development

Michael A. Helmbrecht Iris AO, Inc.

www.irisao.com michael.helmbrecht@irisao.com info@irisao.com

NIH/NEI Phase II SBIR: 2 R44 EY015381-02A1

NASA Phase I SBIR: NNX09CE01P

Approved for public release; unlimited distribution

Small
Business
Innovation
Research

PTT489-5 Segmented PTT Deformable Mirror

Iris AO, Inc. Berkeley, CA

INNOVATION

PTT489 Segmented MEMS Deformable Mirror: A 489 actuator, piston/tip/tilt positionable deformable mirror used to correct optical aberrations.

ACCOMPLISHMENTS

- Conducting production runs
- Dramatic improvement in reliability and failure proofing
- ♦ Beta devices delivered with > 99% segment yield
- ♦ Segment figure < 5 nm rms
- Dielectric coatings demonstrated
- ◆ Path-finding research demonstrating 3000 actuator devices
- Beta devices purchased from NASA GSFC and by customers using them for other SBIR projects

COMMERCIALIZATION

- ◆ PTT489, 489 actuator piston/tip/tilt deformable mirror
- 6 patents awarded, 1 patent pending
- PTT111 and PTT489 DM currently being sold
- DMs purchased by NASA/GSFC and researchers in vision science, astronomy, and defense
- Factory calibrated position controller linearizes operation and limits operation to safe bounds.
- ♦ Larger stroke than competing large-actuator technologies while maintaining speed
- Rigid mirror segments enable dielectric coatings

GOVERNMENT/SCIENCE APPLICATIONS

 High-stroke micromachined deformable mirror to correct aberrations caused by turbulence or to actively correct optical system aberrations

PTT489-5 DM

- Extend to 1000 actuator devices for high turbulence imaging and laser communication applications (DOD) and 3000 actuators for high-contrast imaging applications (NASA)
- Actual applications: Nulling coronagraphs for exoplanet imaging, Atmospheric turbulence compensation for free-space laser communication, laser guide star uplink correction
- Actual applications: Potential applications: High-speed focus correction for laser machining
- Phase III purchase of DM by NASA GSFC for Extrasolar Planetary Imaging Coronagraph (EPIC), GSFC, Clampin et al.
- Purchases of PTT489 by DOD SBIR winners using DM for their projects

Iris AO Contact
Dr. Michael Helmbrecht, 510-849-2375
michael.helmbrecht@irisao.com
www.irisao.com

Outline

- Background: PTT111-X (S37-X)
- PTT111 Improvements
- Scaling up: PTT489-X and beyond
- 10³ segment DM pathfinding research

PTT111: A Solid Foundation

DM Segment Schematic

- 3 DOF: Piston/tip/tilt electrostatic actuation
- Hybrid fabrication process
 - 3-poly surface micromachining
 - Single-crystalsilicon assembled mirror
- Unit cell easily tiled to create large arrays

1st Generation DM Attributes

- High Stroke: 5 μm, 8 μm
 - 10+ µm in controlled environments
- Flat mirror segments: < 30 nm rms
 - 0.25 4 nm PV bow /°C
- Fast mirror rise time
 - 120/140 μs rise/fall times, 20-80%;
 1.63 μm, 36 V
- Precision factory-calibrated controller
 - Linear, open-loop operation
 - Implements position limiting
- Compact drive electronics
- Open-air operation
 - Tested >1000 hrs, 20-70% RH

Smart Driver II - 128 USB

- 128 Channels
- High resolution
 - 14 bit, 200 V
- Low Noise:< 4mV rms
- Factory calibrated

PTT111-X Design and Process Improvements: *Better, then Bigger*

PTT111 DM Improvements

- Flatter mirror segments
 - <5 nm rms</p>
- Improved reliability
 - Snap-in prevention structures
- Relatively high-laser fluence demonstrated
 - Off-the shelf DM w/ protected-aluminum coating: ~95 W/cm²
- Dielectric coatings demonstrated

Anti Snap-In Device: After 100,000,000 Snap-In Events

- Center segment fails because no snap-in protection
- Adjacent segment with protection survives
 - Testing stopped after 100,000,000 snap-in events with no failure

High-Quality Dielectric Coatings

- >99.9% reflectance dielectric coatings @ 532 nm
 - < 30 nm rms residual surface figure errors</p>
 - ~1.5 µm thick coating
 - Backside stress compensation layer
- Protected-Al coatings survived ~95 W/cm²
 - Off-the-shelf DMs
 - Laser testing done at Laboratory for Adaptive Optics (LAO)
- Expect off-the-shelf dielectric coated DMs to be at least 10X higher

Scaling Up: PTT489-X DM

PTT489-5 DM with Removable

Cover

June 7th, 2010

NASA Mirror Technology Days 2010

PTT489-5 DM

1st Generation DM: *PTT111*

- PTT111 used to develop basic systems and conduct testing
 - MEMS process development
 - Electrical characterization
 - Calibration
 - Software drivers
 - AO controllers
 - Reliability testing
 - Optical coating development
- Most aspects were tailored to PTT111

Scaling Up: Creating an Extensible Design

- MEMS design/process inherently scales well
 - Demonstrated stepper and contact photolithography
 - Existing design extensible to ~4000 actuators
 - Larger possible with development of interconnect
- New electrical tester for MEMS testing and characterization
 - Extensible to > 10,000 of actuators
- New calibration interferometer (ARRA Stimulus grant from NIH)
 - Larger FOV
 - Precision field stitching
 - Extensible to 100 mm aperture
- New PC-based software driver
 - Unlimited extensibility
 - Much faster update rates

MEMS Process Development

- Standing start to delivery of beta devices in <2 years
- Timeline
 - Tape out
 - May 2008
 - Actuator mechanical-only run
 - August 2008
 - Actuator electrical run
 - March 2009
 - Mirror wafer run
 - August 2009
 - Beta device delivery
 - March 2010
 - Production runs:
 - Mirror wafers: June 2010
 - Actuator wafers: August 2010

PTT Controller Speed Enhancements

- PCI/PCIe interface: v1.0
 - 2.5 kHz array update rates for PTT111 DM controller
- PCI/PCIe driver: v2.0
 - 6.3 kHz PTT489 array update rates
- Custom FPGA PTT controller demonstrated
 - Array update rates > 35 kHz

Pathfinding Research: 3x 10³ Actuator DMs

10³ Segment DM Path-Finding Research

925 Segment Path Finder

Summary

- PTT111 DM Improvements
 - Flatter segments
 - Faster interface
 - Dielectric coatings
 - Anti snap-in devices
- Technology scaled to PTT489
 - Beta DMs delivered
- All infrastructure revamped to be extensible
- Path-finding research demonstrates ability to scale to 3x10³ actuator DMs

Acknowledgements

Funding Sources

- NASA SBIRs, (DM control, DM Fabrication)
 - Phase I/II: NNG07CA06C, Phase I: NNX09CE01P

- Center for Adaptive Optics (DM Process Development)
 - National Science Foundation Science and Technology: No. AST 9876783

- National Eye Institute Phase II SBIR (DM Process Development)
 - 2 R44 EY015381-02A1

- National Science Foundation Phase II SBIR (2-Poly Process Development)
 - DMI-0522321

R&D Fabrication Facility

Berkeley Microfabrication Laboratory

Research Collaboration

Berkeley Sensor & Actuator Center